

Available online at www.sciencedirect.com

Journal of the European Ceramic Society 27 (2007) 4279-4282

www.elsevier.com/locate/jeurceramsoc

Mixed conductivity, thermal expansion and defect chemistry of A-site deficient $LaNi_{0.5}Ti_{0.5}O_{3-\delta}$

S. Yakovlev*, V. Kharton, A. Yaremchenko, A. Kovalevsky, E. Naumovich, J. Frade

Department of Ceramics and Glass Engineering, University of Aveiro, 3810-193 Aveiro, Portugal Available online 19 March 2007

Abstract

This work is focused on the analysis of defect chemistry and partial electronic and oxygen ionic conductivities of A-site deficient $La_{1-x}Ni_{0.5}Ti_{0.5}O_{3-\delta}$ (x = 0.05 and 0.10). The orthorhombic-to-rhombohedral phase transition was monitored by means of dilatometry and high-temperature X-ray diffractometry. The average thermal expansion coefficients vary in the range (8.5-13.0) × 10^{-6} K⁻¹, increasing with temperature and A-site deficiency. The ion transference numbers determined by the Faradaic efficiency measurements are lower than 0.1% at 900–975 °C in air. Activation energies of the oxygen ionic conductivity at 897–977 °C are 430 and 220 kJ/mol for x = 0.05 and 0.10, respectively. Atomistic simulation demonstrated high stability of ternary defect clusters formed by the vacant sites in the A-sublattice, oxygen vacancies and Ni³⁺ cations, which leads to a very low level of mixed conductivity.

© 2007 Elsevier Ltd. All rights reserved.

Keywords: Defects; Thermal expansion; Ionic conductivity; Perovskites; Membranes; Transition metal oxides

1. Introduction

Nickel-containing mixed oxygen-ionic and electronic conductors with perovskite-like structure are of interest as materials of oxygen-permeable ceramic membranes and as catalyst precursors for natural gas conversion processes.^{1,2} Perovskitetype LaNiO_{3- δ} possesses a low thermodynamic stability and decomposes on heating or reducing oxygen partial pressure with formation of nickel oxide and Ruddlesden-Popper La_{1+n}Ni_nO_{3n+1} phases. Co-existence of Ni and perovskite-type structure results in high catalytic activity of the system due to interaction with metal and oxidation of carbon by oxygen migrating from the lattice.² To some extent, stability of perovskite structure can be improved by the extensive substitution of nickel with other transition metal cations having lower reducibility (Cr, Mn, Ti, etc.).³

The present work was focused on the evaluation of the effect of A-site nonstoichiometry on thermal expansion, defect chemistry and transport properties of $La_{1-x}Ni_{0.5}Ti_{0.5}O_{3-\delta}$ (x=0.05and 0.1). In the parent compound, $LaNi_{0.5}Ti_{0.5}O_{3-\delta}$, all Ni cations are divalent and the electronic transport occurs presumably via hopping of p-type charge carriers.⁴ Introducing A-site

0955-2219/\$ - see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.jeurceramsoc.2007.02.134 deficiency is expected to result in higher concentration of the oxygen vacancies and/or holes. The information on the behavior of such defects in the A-site nonstoichiometric compounds is, however, scarce and contradictory. The oxygen ionic transport may increase with A-site deficiency due to the increase of the oxygen vacancy concentration (according to the neutrality conditions) and due to random distribution of the vacant sites in the cation sub-lattice suppressing ordering in the oxygen sub-lattice.^{5,6} On another hand, local structural distortions and association of the oxygen and cation vacancies can result in deterioration of transport properties of ceramics.⁷ In the present work, atomistic computer simulations were carried out in order to clarify the defect interaction mechanisms.

2. Experimental

Powders of $La_{1-x}Ni_{0.5}Ti_{0.5}O_{3-\delta}$ (x=0.05 and 0.10) were synthesized employing conventional solid state reaction technique. High-purity $La(NO_3)_3 \cdot 6H_2O$, $Ni(NO_3)_2 \cdot 6H_2O$ and TiO_2 were used as raw materials. The solid-state reactions were conducted in air at 1000–1100 °C for 6 h with multiple intervening grinding steps. Dense samples were uniaxially pressed and sintered at 1520–1540 °C in air for 15 h with slow cooling. Microstructure and phase composition of ceramic samples were investigated using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. Structural parameters were

^{*} Corresponding author. Tel.: +351 234 370263; fax: +351 234 425300. *E-mail address:* iakovlev@cv.ua.pt (S. Yakovlev).

Composition	Density (g cm ⁻³)	Unit cell parameters	Average TEC	
			$\overline{T(^{\circ}C)}$	$\bar{\alpha} (\times 10^{-6} \mathrm{K}^{-1})$
$\overline{La_{0.95}Ni_{0.5}Ti_{0.5}O_{3-\delta}}$	5.94	$a = 5.5491 \pm 0.0004 \text{ Å}$	17–527	8.55 ± 0.02
		$b = 5.5503 \pm 0.0004$ Å	527-927	9.99 ± 0.01
		$c = 7.8386 \pm 0.0005 \text{ Å}$	1027-1227	11.96 ± 0.01
		$V = 241.423 \pm 0.031 \text{ Å}^3$		
$La_{0.90}Ni_{0.5}Ti_{0.5}O_{3-\delta}$	6.18	$a = 5.5487 \pm 0.0002$ Å	27-527	9.30 ± 0.02
		$b = 5.5473 \pm 0.0002$ Å	527-827	10.00 ± 0.01
		$c = 7.8374 \pm 0.0002$ Å	927-1097	13.00 ± 0.01
		$V = 241.207 \pm 0.007 \text{ Å}^3$		
	Total conductivity		Oxygen-ionic conductivity	
	$T(^{\circ}C)$	$E_{\rm a}~({\rm kJ}{\rm mol}^{-1})$	$T(^{\circ}C)$	$E_{\rm a}$ (kJ mol ⁻¹)
La _{0.95} Ni _{0.5} Ti _{0.5} O _{3-δ}	507-1017	89 ± 1	897–977	426 ± 5
$La_{0.90}Ni_{0.5}Ti_{0.5}O_{3-\delta}$	547-897	90 ± 1	897–977	222 ± 4

Table 1 Properties of $La_{1-x}Ni_{0.5}Ti_{0.5}O_{3-\delta}$ ceramics

refined using the GSAS software.⁸ Thermal expansion was studied by means of dilatometry at a heating rate of $-270 \,^{\circ}$ C/min. The oxygen nonstoichiometry variations were determined by thermogravimetric analysis (TGA), as described in.⁹ Characterization of transport properties included measurements of the total conductivity (four-probe DC) and oxygen transference numbers (Faradaic efficiency method¹⁰). The GULP software¹¹ was used to perform the atomistic modeling of the structure. Detailed description of the method, successfully used earlier for atomistic computer simulation and analysis of experimental $p(O_2)$ -T- δ diagrams of perovskite-type La_{0.3}Sr_{0.7}Fe(M)O_{3- δ} and SrFe(M)O_{3- δ} (M = Al and Ga), can be found elsewhere.¹²

3. Results and discussion

SEM analysis of prepared ceramics revealed no open porosity, cracks or any traces of liquid phase appearance during sintering. Room-temperature XRD analysis of $La_{0.95}Ni_{0.5}Ti_{0.5}O_{3-\delta}$ ceramics showed formation of singlephase material with orthorhombically distorted perovskite-type structure (space group *Pbnm*), in agreement with data on the parent composition.⁴ The occupancy of the cation sites was calculated by the Rietveld refinement and is found to be very close to nominal; no indication of B-site ordering was revealed. The increase of A-site deficiency up to 10% resulted in the segregation of approx. 2 wt.% of NiO. The lattice parameters are listed in Table 1. Introducing A-site deficiency results in lattice expansion compared to parent compound, LaNi_{0.5}Ti_{0.5}O_{3- δ} (a = 5.5171 Å, b = 5.5501 Å, and c = 7.8562 Å),⁴ as expected taking into account the higher anion repulsion in A-site deficient structure.

Fig. 1 shows the dilatometric curves of $La_{1-x}Ni_{0.5}Ti_{0.5}O_{3-\delta}$ (*x* = 0.05 and 0.10); average thermal expansion coefficients (TECs) are given in Table 1. Increasing of the A-site deficiency leads to moderate increase of the TECs values. Thermal expansion is linear, with the exception of anomaly at approximately 977 and 887 °C for La_{0.95}Ni_{0.5}Ti_{0.5}O_{3- δ} and

 $La_{0.90}Ni_{0.5}Ti_{0.5}O_{3-\delta}$, respectively (Fig. 1). This effect is associated with the orthorhombic-to-rhombohedral phase transition on heating observed by high-temperature XRD analysis.

The average oxygen nonstoichiometry (δ) and fraction of Ni³⁺ cations ([Ni³⁺]/[Ni]_{total}), calculated from TGA results, were found essentially temperature-independent in the entire temperature range studied (25–950 °C), and are equal to 0.04 and 0.13 for La_{0.95}Ni_{0.5}Ti_{0.5}O_{3- δ} and 0.11 and 0.14 for La_{0.90}Ni_{0.5}Ti_{0.5}O_{3- δ}, respectively. Combining the results of TGA and Rietveld refinement, chemical formula for the latter material can be written as La_{0.950}Ni_{0.396}Ni_{0.376}O_{10.576}Ti_{0.528}O_{2.991}.

The total conductivity of La_{0.95}Ni_{0.5}Ti_{0.5}O_{3- δ} in air exhibits a linear Arrhenius behavior in the entire temperature range, as illustrated in Fig. 2. Such dependence is rather atypical for nickel-containing perovskite materials.^{13,14} In the most cases, the total conductivity of Ni-substituted perovskites decreases with increasing temperature due to progressive oxygen losses from the crystal lattice; in particular, LaNi_{1-x}Ti_xO_{3- δ} (*x*<0.4) and LaNi_{0.5}M_{0.5}O_{3- δ} (M=Ga, Fe, and Co) ceramics exhibit a transition to pseudo-metallic behavior on heating above 327–527 °C.^{4,13,14} Obviously, the difference in the conductivity behavior is associated with the temperature-independent oxygen nonstoichiometry of La_{1-x}Ni_{0.5}Ti_{0.5}O_{3- δ}, as mentioned above.

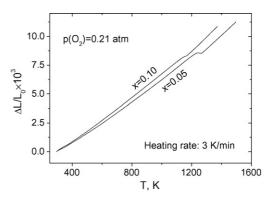


Fig. 1. Dilatometric curves of $La_{1-x}Ni_{0.5}Ti_{0.5}O_{3-\delta}$ ceramics in air.

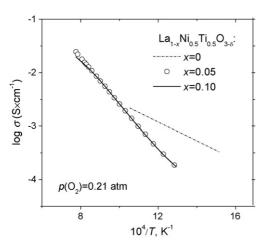


Fig. 2. Total conductivity of $La_{1-x}Ni_{0.5}Ti_{0.5}O_{3-\delta}$ ceramics in air. The data on $LaNi_{0.5}Ti_{0.5}O_{3-\delta}^4$ are shown for comparison.

An increase of the A-site deficiency (10% of vacancies in the nominal composition) promotes oxygen losses and results in a slight deviation from the Arrhenius plot at temperatures above $877 \,^{\circ}$ C.

The total conductivity of both studied compositions is predominantly electronic; the oxygen ion transference numbers (t_0) in air are lower than 0.001. At 727 °C, the total conductivity of cation-deficient materials is similar to that of LaNi_{0.5}Ti_{0.5}O_{3- δ} (Fig. 2), but is characterized with significantly higher activation energy (E_a). Furthermore, the E_a values of La_{1-x}Ni_{0.5}Ti_{0.5}O_{3- δ} (Table 1) are higher than expected for a small-polaron mechanism. This may indicate either strong trapping of electronic charge carriers or a broadband conduction mechanism.

The oxygen ionic conductivities (σ_0), calculated from the results of Faradaic efficiency and total conductivity measurements, are shown in Fig. 3. For comparison, the data on Gd₂Sn₂O₇¹⁵ and (Sm_{0.9}Sr_{0.1})₂Ti₂O₇¹⁶ pyrochlores are also presented. Two latter materials are characterized with a very low concentration of ionic charge carriers formed due to intrinsic thermal disorder.^{15,16} For La_{1-x}Ni_{0.5}Ti_{0.5}O_{3- δ}, the oxygen deficiency results from the A-site vacancies charge compensation and is low, but still significant. Nevertheless, the level of ionic transport in La_{1-x}Ni_{0.5}Ti_{0.5}O_{3- δ} is lower compared

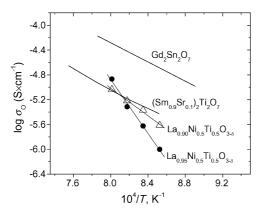


Fig. 3. Temperature dependencies of the oxygen-ionic conductivity of La_{1-x} $Ni_{0.5}Ti_{0.5}O_{3-\delta}$ ceramics in air. The data on $Gd_2Sn_2O_7^{15}$ and $(Sm_{0.9}Sr_{0.1})_2Ti_2O_7^{16}$ pyrochlores are shown for comparison.

to $Gd_2Sn_2O_7$ but compatible to $(Sm_{0.9}Sr_{0.1})_2Ti_2O_7$. One may conclude, therefore, that most oxygen vacancies in the lattice of lanthanum nickelate–titanate are in a trapped state, presumably due to point-defect cluster formation, and do not participate in ionic transport.

In agreement with the results of electronic and ionic transport characterization, the results of the static lattice simulation showed a strong tendency toward localization of the oxygen vacancies near vacant A-site. In most cases, the energetic effects of $V_A^{''} \cdots V_O^{''}$ pair cluster formation vary in the range from -183 to -76 kJ/mol. The localization of electron holes at the nickel cations surrounding A-site vacancy is also energetically favorable; energy of the cluster formation varies in the narrow range -22 to -35 kJ/mol. For the ternary $V_A^{''} \cdots V_O^{''} \ldots N_B^{i}$ clusters it was observed that their average energy of formation is substantially higher than the sum of corresponding pair-cluster energies and lies in the range -49 to -345 kJ/mol, suggesting a maximum stability of these elements in La_{0.95}Ni_{0.5}Ti_{0.5}O_{3-\delta}. Most likely, formation of such ternary clusters is responsible for the very low ionic and electronic conductivities (Figs. 2 and 3).

4. Conclusions

The charge compensation of A-site deficiency in La_{1-x} Ni_{0.5}Ti_{0.5}O_{3- δ} (*x*=0.05 and 0.10) occurs via a mixed mechanism involving formation of Ni³⁺ cations and oxygen vacancies. The oxygen content variations with temperature are very low, indicating a stabilization of trivalent nickel in the lattice of A-site deficient lanthanum nickelate-titanate. La_{1-x}Ni_{0.5}Ti_{0.5}O_{3- δ} ceramics exhibit moderate thermal expansion with TECs values in the range (8.6–9.3) × 10⁻⁶ K⁻¹ at 27–527 °C and (12.0–13.0) × 10⁻⁶ K⁻¹ at 927–1227 °C. Dilatometric and high-temperature XRD studies revealed an orthorhombic-to-rhombohedral phase transition at 977 °C for La_{0.95}Ni_{0.5}Ti_{0.5}O_{3- δ}.

The total conductivity of La_{1-x}Ni_{0.5}Ti_{0.5}O_{3- δ} is predominantly electronic with oxygen ionic contribution lower than 0.1% at 900–975 °C. The ionic conductivity of La_{1-x}Ni_{0.5}Ti_{0.5}O_{3- δ} is low and has extremely high activation energy, 430 kJ/mol (*x*=0.05) and 222 kJ/mol (*x*=0.10). The atomistic computer simulations showed energetic favorability of defect association, particularly the formation of ternary clusters involving lanthanum and oxygen vacancies and Ni³⁺. This type of behavior seems responsible for the low ionic and electronic transport.

Acknowledgements

This work was partially supported by the FCT, Portugal (projects POCI/CTM/59197/2004, SFRH/BPD/24639/2005 and SFRH/BPD/15003/2004).

References

 Batiot-Dupeyrat, C., Vanderrama, G., Meneses, A., Martinez, F., Barrault, J. and Tatibouet, J. M., Pulse study of CO₂ reforming of methane over LaNiO₃. *Appl. Catal. A*, 2003, 248, 143–151.

- York, A. P. E., Xiao, T. and Green, M. L. H., Brief overview of the partial oxidation of methane to synthesis gas. *Topics Catal.*, 2003, 22, 345–358.
- Kharton, V. V., Yaremchenko, A. A. and Naumovich, E. N., Research on the electrochemistry of oxygen ion conductors in the former Soviet Union II. Perovskite-related oxides. *J. Solid State Electrochem.*, 1999, **3**, 303–326.
- Rodríguez, E., Álvarez, I., López, M. L., Veiga, M. L. and Pico, C., Structural, electronic and magnetic characterization of the perovskite LaNi_{1-x}Ti_xO₃ (0≤ x ≤1/2). *J. Solid State Chem.*, 1999, **148**, 479–486.
- Kharton, V. V., Kovalevsky, A. V., Tsipis, E. V., Viskup, A. P., Naumovich, E. N., Jurado, J. R. *et al.*, Mixed conductivity and stability of A-site-deficient Sr(Fe,Ti)O_{3-d} perovskites. *J. Solid State Electrochem.*, 2002, **7**, 30–36.
- Hatchwell, C., Bonanos, N. and Mogensen, M., The role of dopant concentration A-site deficiency and processing on the electrical properties of strontium- and titanium-doped lanthanum scandate. *Solid State Ionics*, 2004, 167, 349–354.
- 7. Nguyen, T. L., Dokiya, M., Wang, S., Tagawa, H. and Hashimoto, T., The effect of oxygen vacancy on the oxide ion mobility in LaAlO₃-based oxides. *Solid State Ionics*, 2000, **130**, 229–241.
- Larson, A. C. and Von Dreele, R. B., General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748, 2004.
- Yaremchenko, A. A., Kharton, V. V., Naumovich, E. N., Shestakov, D. I., Chukharev, V. F., Kovalevsky, A. V. *et al.*, Mixed conductivity, stability

and thermomechanical properties of Ni-doped La(Ga,Mg)O_{$3-\delta$}. Solid State Ionics, 2006, **177**, 549–558.

- Kovalevsky, A. V., Kharton, V. V. and Naumovich, E. N., Oxygen ion conductivity of hexagonal La₂W₁₂₅O_{6.75}. *Mater. Lett.*, 1999, **38**, 300–304.
- Gale, J. D. and Rohl, A. L., The general utility lattice program (GULP). Mol. Simul., 2003, 29, 291–341.
- Naumovich, E. N., Patrakeev, M. V., Kharton, V. V., Islam, M. S., Yaremchenko, A. A., Frade, J. R. *et al.*, Defect interactions in La_{0.3}Sr_{0.7}Fe(*M'*)O_{3-δ} (*M'* = Al, Ga) perovskites: atomistic simulation and analysis of *p*(O₂)-T-δ diagrams. *Solid State Ionics*, 2006, **177**, 457–470.
- Yaremchenko, A. A., Kharton, V. V., Viskup, A. P., Naumovich, E. N., Lapchuk, N. M. and Tikhonovich, V. N., Oxygen ionic and electronic transport in LaGa_{1-x}Ni_xO_{3-δ} perovskites. *J. Solid State Chem.*, 1999, **142**, 325–335.
- Kharton, V. V., Yaremchenko, A. A., Shaula, A. L., Patrakeev, M. V., Naumovich, E. N., Logvinovich, D. I. *et al.*, Transport properties and stability of Ni-containing mixed conductors with perovskite- and K₂NiF₄-type structure. *J. Solid State Chem.*, 2004, **177**, 26–37.
- Yu, T.-H. and Tuller, H. L., Electrical conduction and disorder in the pyrochlore system (Gd_{1-x}Ca_x)₂Sn₂O₇. J. Electroceram., 1998, 2, 49–55.
- Kramer, S., Spears, M. and Tuller, H. L., Conduction of titanate pyrochlores: role of dopants. *Solid State Ionics*, 1994, 72, 59–66.